Assessment of the Effect of Irrigation with Treated Wastewater on Soil Properties and on the Performance of Infiltration Models

Author:

Albalasmeh Ammar A.ORCID,Alghzawi Ma’in Z.,Gharaibeh Mamoun A.ORCID,Mohawesh OsamaORCID

Abstract

An alternative strategy for saving limited water resources is using treated wastewater (TWW) originating from wastewater treatment plants. However, using TWW can influence soil properties owing to its characteristics compared to conventional water resources. Therefore, assessing the effect of TWW on soil properties and soil water infiltration is crucial to maintain sustainable use of TWW and to increase the water use efficiency of the precious irrigation water. Moreover, several studies were carried out to assess the performance of infiltration models. However, few studies evaluate infiltration models under the use of treated wastewater. Therefore, this study aims to assess the effect of TWW irrigation on soil properties after 2 and 5 years and to evaluate five classical infiltration models with field data collected from soil irrigated by treated wastewater for their capability in predicting soil water infiltration. This study revealed that using TWW for irrigation affects significantly on soil properties after 2 and 5 years. The soil irrigated with TWW had significantly higher electrical conductivity, organic matter, sodium adsorption ratio, cation exchange capacity, and lower soil bulk density compared to control. The basic infiltration rate and cumulative infiltration decreased significantly compared to control (60.84, 14.04, and 8.42 mm hr−1 and 140 mm, 72 mm, and 62 mm for control, 2, and 5 years’ treatments, respectively). The performance of the infiltration models proposed by Philip, Horton, Kostiakov, Modified Kostiakov, and the Natural Resources Conservation Service was evaluated with consideration of mean error, root mean square error, model efficiency, and Willmott’s index. Horton model had the lowest mean error (0.0008) and Philip model had the lowest root mean square error (0.1700) while Natural Resources Conservation Service had the highest values (0.0433 and 0.5898) for both mean error and root mean square error, respectively. Moreover, Philip model had the highest values of model efficiency and Willmott’s index, 0.9994 and 0.9998, respectively, whereas Horton model had the lowest values for the same indices, 0.9869 and 0.9967, respectively. Philip model followed by Modified Kostiakov model were the most efficient models in predicting cumulative infiltration, while Natural Resources Conservation Service model was the least predictable model.

Funder

Jordan University of Science and Technology

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3