The Coral Bleaching Automated Stress System (CBASS): A low‐cost, portable system for standardized empirical assessments of coral thermal limits

Author:

Evensen Nicolas R.1ORCID,Parker Katherine E.1,Oliver Thomas A.2,Palumbi Stephen R.3,Logan Cheryl A.4,Ryan James S.4,Klepac Courtney N.15,Perna Gabriela6,Warner Mark E.7,Voolstra Christian R.6ORCID,Barshis Daniel J.1

Affiliation:

1. Department of Biological Sciences Old Dominion University Norfolk Virginia USA

2. Department of Oceanography University of Hawai'i, Mānoa Honolulu Hawaii USA

3. Hopkins Marine Station Stanford University Pacific Grove California USA

4. Department of Marine Science California State University Monterey Bay Seaside California USA

5. Mote Marine Laboratory Sarasota Florida USA

6. Department of Biology University of Konstanz Konstanz Germany

7. School of Marine Science and Policy University of Delaware Lewes Delaware USA

Abstract

AbstractOcean warming is increasingly affecting marine ecosystems across the globe. Reef‐building corals are particularly affected by warming, with mass bleaching events increasing in frequency and leading to widespread coral mortality. Yet, some corals can resist or recover from bleaching better than others. Such variability in thermal resilience could be critical to reef persistence; however, the scientific community lacks standardized diagnostic approaches to rapidly and comparatively assess coral thermal vulnerability prior to bleaching events. We present the Coral Bleaching Automated Stress System (CBASS) as a low‐cost, open‐source, field‐portable experimental system for rapid empirical assessment of coral thermal thresholds using standardized temperature stress profiles and diagnostics. The CBASS consists of four or eight flow‐through experimental aquaria with independent water masses, lighting, and individual automated temperature controls capable of delivering custom modulating thermal profiles. The CBASS is used to conduct daily thermal stress exposures that typically include 3‐h temperature ramps to multiple target temperatures, a 3‐h hold period at the target temperatures, and a 1‐h ramp back down to ambient temperature, followed by an overnight recovery period. This mimics shallow water temperature profiles observed in coral reefs and prompts a rapid acute heat stress response that can serve as a diagnostic tool to identify putative thermotolerant corals for in‐depth assessments of adaptation mechanisms, targeted conservation, and possible use in restoration efforts. The CBASS is deployable within hours and can assay up to 40 coral fragments/aquaria/day, enabling high‐throughput, rapid determination of thermal thresholds for individual genotypes, populations, species, and sites using a standardized experimental framework.

Funder

Deutsche Forschungsgemeinschaft

Gordon and Betty Moore Foundation

National Science Foundation

Paul G. Allen Family Foundation

Publisher

Wiley

Subject

Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3