Cost‐benefit assessment framework for robotics‐driven inspection of floating offshore wind farms

Author:

Khalid Omer123ORCID,Hao Guangbo2ORCID,MacDonald Hamish3ORCID,Cooperman Aubryn4ORCID,Devoy McAuliffe Fiona1ORCID,Desmond Cian5ORCID

Affiliation:

1. MaREI Centre, Environmental Research Institute University College Cork Cork Ireland

2. School of Engineering and Architecture‐Electrical and Electronic Engineering University College Cork Cork Ireland

3. Offshore Renewable Energy Catapult Glasgow UK

4. National Renewable Energy Laboratory (NREL) Golden Colorado USA

5. Gavin and Doherty Geosolutions Dublin Ireland

Abstract

AbstractOperations and maintenance (O&M) of floating offshore wind farms (FOWFs) poses various challenges in terms of greater distances from the shore, harsher weather conditions, and restricted mobility options. Robotic systems have the potential to automate some parts of the O&M leading to continuous feature‐rich data acquisition, operational efficiency, along with health and safety improvements. There remains a gap in assessing the techno‐economic feasibility of robotics in the FOWF sector. This paper investigates the costs and benefits of incorporating robotics into the O&M of a FOWF. A bottom‐up cost model is used to estimate the costs for a proposed multi‐robot platform (MRP). The MRP houses unmanned aerial vehicle (UAV) and remotely operated vehicle (ROV) to conduct the inspection of specific FOWF components. Emphasis is laid on the most conducive O&M activities for robotization and the associated technical and cost aspects. The simulation is conducted in Windfarm Operations and Maintenance cost‐Benefit Analysis Tool (WOMBAT), where the metrics of incurred operational expenditure (OPEX) and the inspection time are calculated and compared with those of a baseline case consisting of crew transfer vessels, rope‐access technicians, and divers. Results show that the MRP can reduce the inspection time incurred, but this reduction has dependency on the efficacy of the robotic system and the associated parameterization e.g., cost elements and the inspection rates. Conversely, the increased MRP day rate results in a higher annualized OPEX. Residual risk is calculated to assess the net benefit of incorporating the MRP. Furthermore, sensitivity analysis is conducted to find the key parameters influencing the OPEX and the inspection time variation. A key output of this work is a robust and realistic framework which can be used for the cost‐benefit assessment of future MRP systems for specific FOWF activities.

Funder

European Commission

National Renewable Energy Laboratory

Publisher

Wiley

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3