Activation of Signal Transducers and Activators of Transcription 3 and Focal Adhesion Kinase by Stromal Cell-Derived Factor 1 Is Required for Migration of Human Mesenchymal Stem Cells in Response to Tumor Cell-Conditioned Medium

Author:

Gao Hui12,Priebe Waldemar3,Glod John24,Banerjee Debabrata12

Affiliation:

1. Department of Medicine, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, USA

2. Department of Pharmacology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, USA

3. Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA

4. Department of Pediatrics, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, USA

Abstract

Abstract Mesenchymal stem cells (MSCs) migrate to tumors both in vitro and in vivo. Gene expression profiling analysis reveals that stromal cell-derived factor 1 (SDF-1) is significantly upregulated in MSCs exposed to tumor cell-conditioned medium, when compared with cells treated with control medium, suggesting that SDF-1 signaling is important in mediating MSC migration. This study investigates downstream signaling during MSC migration in response to tumor cell-conditioned medium and recombinant SDF-1 protein treatments. We observed that both recombinant SDF-1 and tumor cell-conditioned medium were able to activate downstream signaling via signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) as revealed by increased phosphorylation of STAT3 and ERK1/2 in human MSCs (hMSCs). Significant impairment of in vitro migration was observed in the presence of MAPK/ERK kinase (MEK) inhibitor PD98059, whereas two Janus kinase 2 (Jak2) inhibitors completely abolished migration induced by tumor cell-conditioned medium. Impaired MSC migration correlated with decreased levels of phosphorylated STAT3 and ERK1/2, suggesting that SDF-1 stimulation activates Jak2/STAT3 as well as MEK/ERK1/2 signaling, which in turn promotes migration of MSCs toward tumor cells. Furthermore, stimulation of hMSCs with recombinant SDF-1 and tumor cell-conditioned medium also significantly activated the focal adhesion kinases (FAKs) and paxillin, which correlated with reorganization of F-actin filaments in hMSCs. Decreased phosphorylation of FAK and paxillin as well as disruption of cytoskeleton organization was observed following Jak2 and MEK inhibitor treatment. Taken together, our results provide insight into the molecular pathways responsible for MSC migration toward the tumor microenvironment and may provide the molecular basis for modifying MSCs for therapeutic purposes. Disclosure of potential conflicts of interest is found at the end of this article.

Funder

New Jersey Commission on Cancer Research

New Jersey Stem Cell Initiative Grant from NJCST

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3