Differential Gene Expression Associated with Migration of Mesenchymal Stem Cells to Conditioned Medium from Tumor Cells or Bone Marrow Cells

Author:

Menon Lata G.1,Picinich Sonia23,Koneru Rajeth4,Gao Hui1,Lin Siang Yo3,Koneru Mythili4,Mayer-Kuckuk Philipp3,Glod John423,Banerjee Debabrata231

Affiliation:

1. Department of Medicine, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, USA

2. Graduate School of Biomedical Sciences, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, USA

3. Department of Pharmacology, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, USA

4. Department of Pediatric Oncology, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, USA

Abstract

Abstract Distinct signals that guide migration of mesenchymal stem cells (MSCs) to specific in vivo targets remain unknown. We have used rat MSCs to investigate the molecular mechanisms involved in such migration. Rat MSCs were shown to migrate to tumor microenvironment in vivo, and an in vitro migration assay was used under defined conditions to permit further mechanistic investigations. We hypothesized that distinct molecular signals are involved in the homing of MSCs to tumor sites and bone marrow. To test this hypothesis, gene expression profiles of MSCs exposed in vitro to conditioned medium (CM) from either tumor cells or bone marrow were compared. Analysis of the microarray gene expression data revealed that 104 transcripts were upregulated in rat MSCs exposed to CM from C85 human colorectal cancer cells for 24 hours versus control medium. A subset of 12 transcripts were found to be upregulated in rat MSCs that were exposed to tumor cell CM but downregulated when MSCs were exposed to bone marrow CM and included CXCL-12 (stromal cell-derived factor-1 [SDF-1]), CXCL-2, CINC-2, endothelial cell specific molecule-1, fibroblast growth factor-7, nuclear factor-κB p105, and thrombomodulin. Exposure to tumor cell CM enhanced migration of MSCs and correlated with increased SDF-1 protein production. Moreover, knockdown of SDF-1 expression in MSCs inhibited migration of these cells to CM from tumor cells, but not bone marrow cells, confirming the importance of SDF-1 expression by MSCs in this differential migration. These results suggest that increased SDF-1 production by MSCs acts in an autocrine manner and is required for migratory responses to tumor cells.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 207 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3