Interpreting correlations in stress‐dependent permeability, porosity, and compressibility of rocks: A viewpoint from finite strain theory

Author:

Wang Luyu1ORCID,Zhang Yanjun2

Affiliation:

1. Department of Civil and Environmental Engineering The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong SAR China

2. College of Petroleum Engineering Xi'an Shiyou University Xi'an Shaanxi China

Abstract

AbstractCharacteristics of stress‐dependent properties of rocks are commonly described by empirical laws. It is crucial to establish a universal law that connects rock properties with stress. The present study focuses on exploring the correlations among permeability, porosity, and compressibility observed in experiments. To achieve this, we propose a novel finite strain‐based dual‐component (FS‐DC) model, grounded in the finite strain theory within the framework of continuum mechanics. The FS‐DC model decomposes the original problem into the rock matrix and micro‐pores/cracks components. The deformation gradient tensor is utilized to derive the constitutive relations. One of the novelties is that the stress‐dependent variables are calculated in the current configuration, in contrast to the reference configuration used in small deformation theory. The model has only a few number of parameters, each with specific physical interpretations. It can be reduced to existing models with appropriate simplifications. Then, model performance is examined against experimental data, including permeability, porosity, compressibility, volumetric strain and specific storage. It proves that the variations of these properties are effectively described by the proposed model. Further analysis reveals the effect of pores/cracks parameters. The validity of the FS‐DC model is examined across a broad range of pressures. The results show that rock properties at high confining pressures (300 MPa) differ from those observed under relatively low pressures (200 MPa). This disparity can be attributed to inelastic behaviors of micro‐structure, wherein the rock skeleton undergoes permanent deformation and breakage.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3