Affiliation:
1. Key Laboratory of Advanced Polymeric Materials of Shanghai, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
2. School of Chemical Engineering Shandong Institute of Petroleum and Chemical Technology Dongying China
3. Suzhou Institute of Green Fiber Technology Jiangsu Guowang High‐Technique Fiber Co., Ltd, Meiyan Industrial Concentration Zone Suzhou China
4. College of Materials Science and Engineering Fuzhou University Fuzhou China
Abstract
AbstractAs core components in electric/electronic fields, dielectric materials have recently received ever‐increasing interests. Among them, polymer‐based dielectric composites have drawn ever‐increasing attentions due to their high‐temperature resistance and excellent processibility. However, state‐of‐art studies mostly focus on the modification of single‐phase filler, while the heterogeneous three phase interactions between fillers and polymer matrix are rarely studied. To fill this gap, in this study, a novel strategy of interfacial design and structural construction of three‐phase BaTiO3/rGO/polymer nanocomposites have been promoted to simultaneously build interfacial barriers between adjacent rGO nanosheets and to enhance the interfacial polarization of rGO nanosheets for improved dielectric, thermal and mechanical properties. The dielectric constant of 0.6 wt% BT/ARGO/PEI reached 644@1 kHz with a dielectric loss of only 0.218, while these values for 0.5 wt% ARGO/PEI composites are 471 and 0.489, respectively. Meanwhile, the breakdown strength almost doubled (from 48 kV·mm−1 to 87 kV·mm−1) upon the addition of BaTiO3 (BT) nanoparticles. Moreover, the introduced BT nanoparticles significantly enhanced the intermolecular frictions between different materials and contributed largely to promoted mechanical and thermal properties. We therefore speculate this work establishes a strong foundation for fabricating three heterogeneous‐phase high dielectric polymer materials with excellent dielectric, thermal and mechanical properties.Highlights
Graphene oxide was modified by APTES and reduced by L‐Ascorbic Acid.
Three‐phase BT/ARGO/PEI composites showed enhanced dielectric properties.
The incorporated BT nanoparticles reduced the dielectric loss.
The thermal and mechanical properties of BT/ARGO/PEI composites are optimized.
Interfacial interactions between different phase of materials are studied.
Funder
National Natural Science Foundation of China
Shanghai Rising-Star Program
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献