Three‐phase interfacial design in BaTiO3/rGO/polyetherimide composite enabling enhanced dielectric, thermal and mechanical properties

Author:

Zhang Pengtu12ORCID,Yuan Shiling2,Song Xinwang2,Tang Junsong3,Lin Qilang4,Liu Xiaoyun1,Zhuang Qixin1,Mi Puke1,Zuo Peiyuan1

Affiliation:

1. Key Laboratory of Advanced Polymeric Materials of Shanghai, School of Materials Science and Engineering East China University of Science and Technology Shanghai China

2. School of Chemical Engineering Shandong Institute of Petroleum and Chemical Technology Dongying China

3. Suzhou Institute of Green Fiber Technology Jiangsu Guowang High‐Technique Fiber Co., Ltd, Meiyan Industrial Concentration Zone Suzhou China

4. College of Materials Science and Engineering Fuzhou University Fuzhou China

Abstract

AbstractAs core components in electric/electronic fields, dielectric materials have recently received ever‐increasing interests. Among them, polymer‐based dielectric composites have drawn ever‐increasing attentions due to their high‐temperature resistance and excellent processibility. However, state‐of‐art studies mostly focus on the modification of single‐phase filler, while the heterogeneous three phase interactions between fillers and polymer matrix are rarely studied. To fill this gap, in this study, a novel strategy of interfacial design and structural construction of three‐phase BaTiO3/rGO/polymer nanocomposites have been promoted to simultaneously build interfacial barriers between adjacent rGO nanosheets and to enhance the interfacial polarization of rGO nanosheets for improved dielectric, thermal and mechanical properties. The dielectric constant of 0.6 wt% BT/ARGO/PEI reached 644@1 kHz with a dielectric loss of only 0.218, while these values for 0.5 wt% ARGO/PEI composites are 471 and 0.489, respectively. Meanwhile, the breakdown strength almost doubled (from 48 kV·mm−1 to 87 kV·mm−1) upon the addition of BaTiO3 (BT) nanoparticles. Moreover, the introduced BT nanoparticles significantly enhanced the intermolecular frictions between different materials and contributed largely to promoted mechanical and thermal properties. We therefore speculate this work establishes a strong foundation for fabricating three heterogeneous‐phase high dielectric polymer materials with excellent dielectric, thermal and mechanical properties.Highlights Graphene oxide was modified by APTES and reduced by L‐Ascorbic Acid. Three‐phase BT/ARGO/PEI composites showed enhanced dielectric properties. The incorporated BT nanoparticles reduced the dielectric loss. The thermal and mechanical properties of BT/ARGO/PEI composites are optimized. Interfacial interactions between different phase of materials are studied.

Funder

National Natural Science Foundation of China

Shanghai Rising-Star Program

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3