A robust computational strategy for failure prediction of masonry structures using an improved multi‐surface damage‐plastic based interface model

Author:

Nie Yu1,Sheikh Abdul1ORCID,Visintin Phillip1,Griffith Michael1

Affiliation:

1. School of Civil, Environmental & Mining Engineering The University of Adelaide Adelaide South Australia Australia

Abstract

AbstractIn this study, a new traction‐separation based constitutive model for use in finite element simulation of masonry joints under complex loading conditions is developed for cohesive elements. The proposed model is formulated using damage parameters and plastic deformation with mutual couplings, and can accurately simulate the complex nonlinear behaviors of masonry joints considering hardening or softening of strength and stiffness degradation. To enhance the numerical stability of the model, plasticity and damage are separated algorithmically and implemented in two phases. In the first phase, the plastic deformations are treated using a multi‐surface plasticity model composed of a smooth hyperbolic yield surface for tension‐shear mixed‐mode failure and an elliptical cap primarily for the compressive failure. This is implemented in effective stress space and helps restrict the evolution of yield surfaces with no softening, significantly enhancing the efficiency of stress return mapping by the closed point projection method. In addition, an adaptive sub‐stepping scheme is adopted to further improve the robustness of the numerical implementation. In the second phase, nominal stresses are computed from the effective stresses using damage parameters. The evolution of these damage parameters is defined in terms of plastic work which is defined by a polynomial form, and is recommended in this study for a better calibration capability. Improvements are made in the formulation of compressive cap including incorporation of hardening of strength and stiffness degradations as these are ignored in existing interface models. This approach helped improve simulation of masonry under cyclic loads with tension‐compression transitions. For the structural level applications, the interface model is implemented within a finite element program, which is utilized to simulate failure of a number of masonry specimens under in‐plane/out‐of‐plane monotonic/cyclic loading. The simulated results are rigorously validated with existing experimental data that shows a good potential in modeling masonry structures.

Funder

Australian Research Council

Publisher

Wiley

Subject

Applied Mathematics,General Engineering,Numerical Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3