Computational Methods for Masonry Vaults: A Review of Recent Results

Author:

Tralli A.,Alessandri C.,Milani G.

Abstract

The present paper makes a critical review of some methods and models, now available in the technical litera-ture and commonly used in the analysis of masonry vaults up to their collapse, by highlighting advantages and drawbacks of each approach. All methods adopted to describe the mechanical behavior of masonry structures, in order to be reliable, must take into account the distinctive aspects of masonry, namely the scarce (or zero) tensile strength, the good resistance in compression and the occurrence of failure mechanisms through rotation-translation of rigid macro-blocks. Classic no-tension material models disregard the small existing tensile strength and make the assumption of (1) infinitely elastic be-havior in compression and (2) isotropy, giving thus the possibility to deal with either semi-analytical approaches (espe-cially for arches) or robust numerical procedures. More advanced but rather complex models are nowadays able to deal al-so with anisotropy induced by texture, small tensile strength and softening in tension, as well as by finite strength in com-pression. Traditionally – and nowadays it is still an opinion commonly accepted, in contrast with step by step complex procedures, Limit Analysis has proved to be the most effective Method for a fast and reliable evaluation of the load bear-ing capacity of vaulted masonry structures: classic lower and upper bound theorems recall respectively the concepts of equilibrium and occurrence of failure mechanisms with rigid elements. The so-called Thrust Network Method moves its steps from lower bound theorems, whereas FE limit analysis approaches with infinitely resistant elements and dissipation on interfaces take inspiration from the upper bound point of view. An alternative to Limit Analysis is represented by tradi-tional FEM combined with either elastic-plastic or damaging models with softening, commonly used for other materials but recently adapted also to masonry. They are able to provide a large set of output numerical information but further studies are still needed to ensure their proper application.

Publisher

Bentham Science Publishers Ltd.

Subject

Civil and Structural Engineering

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3