Thermal inspection of hybrid nanofluid flows over a stretched cylinder at an oblique stagnation point with variable characteristics

Author:

Li Shuguang1,Shahmir Nazia2,Ramzan Muhammad2ORCID,Ahammad N. Ameer3,Alhuthali Abdullah M. S.4,Saleel C. Ahamed56,Kadry Seifedine789

Affiliation:

1. School of Computer Science and Technology Shandong Technology and Business University Yantai China

2. Department of Computer Science Bahria University Islamabad Pakistan

3. Department of Mathematics Faculty of Science University of Tabuk Tabuk Saudi Arabia

4. Department of Physics College of Sciences Taif University Taif Saudi Arabia

5. Department of Mechanical Engineering College of Engineering King Khalid University Abha Saudi Arabia

6. Center for Engineering and Technology Innovations King Khalid University Abha Saudi Arabia

7. Department of Applied Data Science Noroff University College Kristiansand Norway

8. Department of Electrical and Computer Engineering Lebanese American University Byblos Lebanon

9. MEU Research Unit Middle East University Amman Jordan

Abstract

AbstractThe enhanced thermal characteristics of hybrid nanofluids make them more versatile compared to conventional fluids. These improved thermal properties render hybrid nanomaterials highly practical for a wide range of applications, including solar systems, energy production, and cooling processes. In line with this perspective, the current study concentrates on evaluating the thermal performance of two unique hybrid nanofluid flows that impinge obliquely on a stretched cylinder. Two base fluids, FC‐77 and a binary mixture of water and ethylene glycol (50:50)%, have been considered, with the addition of nanoparticles such as single‐walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs). The said model's novelty is enhanced by the temperature dependent viscosity and thermal conductivity. Appropriate transformations are applied to derive a system of ordinary differential equations (ODEs), which are then solved numerically using the bvp4c method. A thorough examination is conducted on the physical phenomenon of pertinent parameters, accompanied by graphical representations. The results revealed that, for the FC‐77 coolant‐based hybrid nanofluid, mounting the particle volume fraction leads to a significant reduction in temperature distribution. Additionally, it is perceived that the presence of a variable viscosity parameter causes a reduction in the surface drag coefficient as well as the axial and tangential velocities. The validity of the proposed flow model is demonstrated by comparing the results with those from an earlier study.

Funder

Deanship of Scientific Research, King Khalid University

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3