Computational investigation of methanol-based hybrid nanofluid flow over a stretching cylinder with Cattaneo–Christov heat flux

Author:

Farooq Umar1ORCID,Liu Haihu1,Basem Ali2,Fatima Nahid3,Alhushaybari Abdullah4,Imran Muhammad5,Ali Naim Ben6,Muhammad Taseer7

Affiliation:

1. School of Energy and Power Engineering, Xi'an Jiaotong University , Xi'an 710049 , China

2. Air Conditioning Engineering Department, Faculty of Engineering, Warith Al-Anbiyaa University , Karbala 56001 , Iraq

3. Department of Mathematics and Sciences, Prince Sultan University , Riyadh 11586 , Saudi Arabia

4. Department of Mathematics, Turabah University College, Taif University , Taif 26511 , Saudi Arabia

5. Department of Mathematics, Government College University Faisalabad , Faisalabad 38000 , Pakistan

6. Department of Industrial Engineering, College of Engineering, University of Ha'il , Ha'il City 81451 , Saudi Arabia

7. Department of Mathematics, College of Sciences, King Khalid University , Abha 61413 , Saudi Arabia

Abstract

Abstract This study investigates heat transfer rates in (AA7075-AA7072/Methanol) hybrid nanofluid flows, considering non-uniform heat sources and Cattaneo–Christov heat flux, with significant implications for aerospace engineering by enhancing thermal management in aircraft engines. The findings could revolutionize automotive cooling system efficiency, optimize heat dissipation in electronic devices, and advance the design of renewable energy systems such as concentrated solar power plants. The study aims to conduct a comparative analysis of (AA7075/Methanol) nanofluid and (AA7075-AA7072/Methanol) hybrid nanofluid flow, examining heat transfer rates, non-uniform heat sources, and Cattaneo–Christov heat flux theory around a stretching cylinder. Thermal radiation and the Biot number are also evaluated. Two different nanoparticles, AA7072 and AA7075, are used with methanol to create AA7075/Methanol nanofluid and AA7075-AA7072/Methanol hybrid nanofluid. The study compresses the resultant non-linear partial differential equation system and applies suitable similarity transformations to reduce the governing partial differential equations with boundary conditions to dimensionless form. The BVP4C shooting method in MATLAB is employed to numerically and graphically solve these dimensionless ordinary differential equations. The results indicate that higher curvature parameter values correlate with increased velocity and temperature distribution profiles. A rise in nanoparticle volume fraction reduces the radial velocity profile but increases the temperature profile. Temperature distribution profiles increase with higher thermal radiation parameter and Biot number values, while higher thermal relaxation parameter values decrease temperature. Additionally, thermal distribution profiles rise with increasing values of both the time-dependent heat source constant and space-dependent heat source parameter.

Funder

Taif University

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3