Homotopic solution of the chemically reactive magnetohydrodynamic flow of a hybrid nanofluid over a rotating disk with Brownian motion and thermophoresis effects

Author:

Rashid Amjid1,Dawar Abdullah1ORCID,Ayaz Muhammad1,Islam Saeed1,Galal Ahmed M.23,Gul Humaira1

Affiliation:

1. Department of Mathematics Abdul Wali Khan University Mardan Khyber Pakhtunkhwa Pakistan

2. Department of Mechanical Engineering College of Engineering in Wadi Alddawasir Prince Sattam bin Abdulaziz University Saudi Arabia

3. Production Engineering and Mechanical Design Department Faculty of Engineering Mansoura University Mansoura Egypt

Abstract

AbstractDue to the synergetic effects of several types of nanomaterials, the primary goal of the hybrid nanofluid is to enhance the energy transport capabilities over a base fluid. Hybrid nanofluids have a wide range of applications in the industrial, technical, and medical industries, including solar heating systems, food processing, microchannel heat sinks (MCHS), and medicines. In this article, the researchers have investigated the water‐based hybrid nanofluid flow comprising silver and alumina nanoparticles past a spinning disk. The effect of Brownian motion, activation energy, magnetic field, and thermophoresis are taken into account. The PDEs are transformed into ODEs by means of suitable correspondence transformations. The modeled equations are solved by using a semi‐analytical method known as HAM. Graphical representations of the nanofluid and hybrid nanofluid profiles are used. The current findings are contrasted with those that have already been published and are confirmed to be remarkably comparable. The outcomes showed that the radial and tangential velocities of the nanofluids and hybrid nanofluid reduced as the magnetic factor augmented. Nanofluids and hybrid nanofluid surface drag is increased by magnetic factor. Hybrid nanofluid exhibits higher growth due to the magnetic factor than nanofluids do. The heat transmission rates of nanofluids and hybrid nanoliquid have grown as a result of the thermophoresis factor and nanoparticle volume fractions. In comparison to nanofluids, the hybrid nanofluid also possesses a better thermal conductivity.

Publisher

Wiley

Subject

Applied Mathematics,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3