Influence of carbon nanotube functionalization on the physical properties of PCL diol/chitosan blends

Author:

Antolin‐Ceron V.H.1,Gonzalez‐Jauregui D.1,Astudillo‐Sanchez P.D.1,Cabrera‐Chavarria J.1,Andrade‐Melecio H.A.2,Barrera‐Rivera K.A.3,Martinez‐Richa A.3

Affiliation:

1. Departamento De Ciencias Básicas Aplicadas Universidad De Guadalajara Tonalá México

2. Departamento De Ingeniería mecánica eléctrica Universidad de Guadalajara Guadalajara México

3. Departamento De Química Universidad De Guanajuato Guanajuato México

Abstract

AbstractBACKGROUNDChitosan‐poly(ε)caprolactone diol (PCL) blends were studied for food packaging film applications. The mechanical and thermal properties of blend films can be regulated with different amounts of PCL and the addition of a nanofiller could reinforce specific domains in the blend to generate nanocomposites with desirable properties for food packaging. This is evidence of the selective insertion of functionalized carbon nanotubes in either PCL or chitosan domains, depending on the nature of chemical groups and the structure over the surface nanofiller.RESULTSMultiwalled carbon nanotubes (MWNTs) were functionalized with four different dendritic molecules and were tested as nanofillers to reinforce biodegradable films made from 70 to 30, 80 to 20, and 90 to 10 Chitosan‐PCL blends in an effort to explore their effects on the barrier and mechanical properties of the yielded nanocomposites. PCL was obtained by biocatalysis from ɛ‐caprolactone and diethylene glycol and then blended with commercial chitosan. Blends were prepared from a solution of chitosan in acetic acid (2% wt/wt), adding PCL diol in chloroform dropwise under stirring. The MWNTs were modified with several functional groups (tannic acid via no‐covalent functionalization, poly(citric acid), poly(urea‐urethane), and poly(amino‐amido) dendrimer). Nanocomposites were obtained by adding in situ 0.5 wt/wt functionalized MWNTs during the preparation of blends. The structural interactions, morphological, and mechanical features of MWNTs/Blend nanocomposites were studied by Fourier‐transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscope (SEM), field emission scanning electron microscopy (FE‐SEM), and strain–stress testing.CONCLUSIONSPreferential interactions between nanofiller and matrix strongly depend on the nature of the nanofiller and the amount of hydrogen bonding species. It was possible to reinforce a particular domain in the blend to generate nanocomposites with desirable/tunable properties by using complementary chemical groups onto MWNTs surface. © 2023 Society of Chemical Industry (SCI).

Funder

Universidad de Guadalajara

Universidad de Guanajuato

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Pollution,Waste Management and Disposal,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3