A novel cellobiose 2‐epimerase from anaerobic halophilic Iocasia fonsfrigidae and its ability to convert lactose in fresh goat milk into epilactose

Author:

Eat Sokhoeun1,Wulansari Shinta1,Ketbot Prattana2,Waeonukul Rattiya12,Pason Patthra12,Uke Ayaka3,Kosugi Akihiko3,Ratanakhanokchai Khanok12,Tachaapaikoon Chakrit12ORCID

Affiliation:

1. Division of Biochemical Technology, School of Bioresources and Technology King Mongkut's University of Technology Thonburi Bangkok Thailand

2. Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute King Mongkut's University of Technology Thonburi Bangkok Thailand

3. Biological Resources and Post‐harvest Division Japan International Research Center for Agricultural Sciences Tsukuba Japan

Abstract

AbstractBACKGROUNDCellobiose 2‐epimerase (CE) has received great attention due to its potential applications in the food and pharmaceutical industries. In this study, a novel CE from mesophilic anaerobic halophilic bacterium Iocasia fonsfrigidae strain SP3‐1 (IfCE) was successfully expressed in Escherichia coli and characterized.RESULTSUnlike other CEs, the purified IfCE shows only epimerization activity toward β‐1,4‐glycosidic linkages of disaccharides, including mannobiose, cellobiose and lactose, but not for monosaccharides, β‐1,4‐glycosidic linkages of trisaccharides and α‐1,4‐glycosidic linkages of disaccharides. Only one epimerization product was obtained from the action of IfCE against mannobiose, cellobiose and lactose. Under optimum conditions, 31.0% of epilactose, a rare and low‐calorie prebiotic sweetener with medicinal and pharmacological properties, was obtained from 10 mg mL−1 lactose. IfCE was highly active against lactose under NaCl concentrations up to 500 mmol L−1, possibly due to the excessive basic (arginine and lysine) and acidic (aspartic and glutamic acids) amino acid residues, which are localized on the surface of the halophilic enzyme structure. These residues may protect the enzyme from Cl and Na+ ions from the environment, respectively. Under normal conditions, IfCE was able to convert lactose present in fresh goat milk to epilactose with a conversion yield of 31% in 10 min. In addition, IfCE has been investigated as a safe enzyme for human allergen.CONCLUSIONThe results suggested that IfCE is a promising candidate to increase the quality and value of milk and dairy products by converting lactose that causes digestive problems in people with lactose intolerance into epilactose. © 2024 Society of Chemical Industry.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3