Self‐selective memristor‐enabled in‐memory search for highly efficient data mining

Author:

Yang Ling1,Huang Xiaodi1,Li Yi12ORCID,Zhou Houji1,Yu Yingjie1,Bao Han1,Li Jiancong1,Ren Shengguang1,Wang Feng1,Ye Lei12,He Yuhui12,Chen Jia3,Pu Guiyou4,Li Xiang4,Miao Xiangshui12

Affiliation:

1. School of Integrated Circuits, Hubei Key Laboratory for Advanced Memories Huazhong University of Science and Technology Wuhan the People's Republic of China

2. Hubei Yangtze Memory Laboratories Wuhan the People's Republic of China

3. InnoHK Centers AI Chip Center for Emerging Smart Systems Hong Kong the People's Republic of China

4. Huawei Technologies Co., Ltd. Shenzhen the People's Republic of China

Abstract

AbstractSimilarity search, that is, finding similar items in massive data, is a fundamental computing problem in many fields such as data mining and information retrieval. However, for large‐scale and high‐dimension data, it suffers from high computational complexity, requiring tremendous computation resources. Here, based on the low‐power self‐selective memristors, for the first time, we propose an in‐memory search (IMS) system with two innovative designs. First, by exploiting the natural distribution law of the devices resistance, a hardware locality sensitive hashing encoder has been designed to transform the real‐valued vectors into more efficient binary codes. Second, a compact memristive ternary content addressable memory is developed to calculate the Hamming distances between the binary codes in parallel. Our IMS system demonstrated a 168× energy efficiency improvement over all‐transistors counterparts in clustering and classification tasks, while achieving a software‐comparable accuracy, thus providing a low‐complexity and low‐power solution for in‐memory data mining applications.image

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Surfaces, Coatings and Films,Materials Science (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3