Affiliation:
1. School of Integrated Circuits, Hubei Key Laboratory for Advanced Memories Huazhong University of Science and Technology Wuhan the People's Republic of China
2. Hubei Yangtze Memory Laboratories Wuhan the People's Republic of China
3. InnoHK Centers AI Chip Center for Emerging Smart Systems Hong Kong the People's Republic of China
4. Huawei Technologies Co., Ltd. Shenzhen the People's Republic of China
Abstract
AbstractSimilarity search, that is, finding similar items in massive data, is a fundamental computing problem in many fields such as data mining and information retrieval. However, for large‐scale and high‐dimension data, it suffers from high computational complexity, requiring tremendous computation resources. Here, based on the low‐power self‐selective memristors, for the first time, we propose an in‐memory search (IMS) system with two innovative designs. First, by exploiting the natural distribution law of the devices resistance, a hardware locality sensitive hashing encoder has been designed to transform the real‐valued vectors into more efficient binary codes. Second, a compact memristive ternary content addressable memory is developed to calculate the Hamming distances between the binary codes in parallel. Our IMS system demonstrated a 168× energy efficiency improvement over all‐transistors counterparts in clustering and classification tasks, while achieving a software‐comparable accuracy, thus providing a low‐complexity and low‐power solution for in‐memory data mining applications.image
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Surfaces, Coatings and Films,Materials Science (miscellaneous),Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献