Kinetics of cashew apple drying through mechanistic models and analysis of the effects of drying conditions on the retention of bioactive compounds

Author:

Shirsat Vikramaditya R.1,Vaidya Prakash D.1ORCID,Dalvi Vishwanath H.1ORCID,Singhal Rekha S.2,Kelkar Anil K.3,Joshi Jyeshtharaj B.134

Affiliation:

1. Department of Chemical Engineering Institute of Chemical Technology Mumbai India

2. Department of Food Engineering and Technology Institute of Chemical Technology Mumbai India

3. Marathi Vidnyan Parishad Mumbai India

4. Homi Bhabha National Institute Mumbai India

Abstract

AbstractGlobal cashew nut production is nearly 4 million tons per year, valued at 7 billion US dollars. Remarkably, almost the entire cashew apple crop, amounting to 20 million tons annually, goes to waste. However, the cashew apple contains valuable nutraceutical compounds, including tannins, polyphenols, and carotenoids, estimated to be worth 150 million US dollars annually. Due to the highly perishable nature of cashew apples, degradation is a significant issue. In response, the current work has established drying as an effective preservation technique for these bioactive components. The effect of drying temperature on bioactive compounds has been thoroughly investigated. The non‐random two liquid (NRTL) activity coefficient model effectively captures the thermodynamics of the drying process. To facilitate the selection and design of drying equipment, two mechanistic mass transfer models were developed. The first model employs the Maxwell‐Stefan framework to account for internal diffusion, with external mass transfer resistance appearing as a boundary condition. While this model works well for products like grapes, it proved inadequate for explaining the drying behaviour of cashew apples. Consequently, a second model was developed, postulating rapid moisture transport by capillary action within the cashew apple. This model effectively captures the effects of a wide range of operating conditions, using only external mass transfer resistance as the tuneable kinetic parameter. This mechanistic model is more suitable for dryer design compared to conventional phenomenological models like the logarithmic model and the two‐term exponential model.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3