Identification of bridge cable force damage based on Bayesian inference

Author:

Chen Zhong‐shi1,Zheng Jian‐bing2,Chu Tian‐yun3,Li Jing‐jing4,Ding Yang5ORCID

Affiliation:

1. School of Mechanical and Intelligent Manufacturing Fujian Chuanzheng Communications College Fuzhou China

2. Fujian Xinghang Heavy Industry Co., Ltd. Fuzhou China

3. Jiaxing Tiankun Construction Engineering Design Co., Ltd. Jiaxing China

4. Tongzhu Zhihui Information Technology (Jiaxing) Co., Ltd. Jiaxing China

5. Department of Civil Engineering Hangzhou City University Hangzhou China

Abstract

AbstractBridge cable is an important force transmission component of bridge, but it is easy to be damaged during service, such as fatigue damage and corrosion damage, which seriously threatens the safety of bridge structure. Therefore, it is necessary to identify damage of cable force. Generally, the damage of cable force can be identified by the change of cable frequency. This paper establishes a cable force damage identification model based on Bayesian inference and uses Metropolis‐Hastings (MH) algorithm to solve the posterior probability function of unknown parameter. In the Bayesian inference model, the influence of the priori function of unknown parameters on the posterior probability distribution model is discussed. In the MH algorithm, the influence of different proposed distributions (Normal distribution, Gamma distribution and Weibull distribution) on the sampling results is discussed based on three numerical simulation studies, and the influence of burned sample proportion on the establishment of a posteriori distribution function is analyzed. Furthermore, the influence of monitoring noise data and missing data on cable force damage identification is considered, and the robustness of the proposed method is analyzed.

Publisher

Wiley

Subject

General Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3