Predicting construction accidents on sites: An improved atomic search optimization algorithm approach

Author:

Liu Chaoqiong1ORCID,Li Li2,Qiang Yue2,Zhang Shixin2

Affiliation:

1. Department of Building and Environmental Safety Chongqing Vocational Institute of Safety Technology Chongqing China

2. School of Civil Engineering Chongqing Three Gorges University Chongqing China

Abstract

AbstractConstruction accidents in the construction industry cause a large amount of property damage and human casualties. Therefore, avoiding construction accidents as much as possible is a problem that engineers have been working on for a long time. Currently, few construction managers use artificial intelligence methods for construction safety management. The purpose of this article is to propose a new artificial neural network (ANN) prediction model to provide early warning for future construction and to provide reference for construction organization decision‐makers. In the proposed method, atomic search optimization algorithm is used to optimize the weights and thresholds of back propagation neural network, and the Tent chaotic mapping is used to initialize the population to increase the diversity of the population. The statistical data of production safety accidents of housing and municipal engineering in China from 2015 to 2019 are used as an example, and the prediction results of the proposed model are compared with back‐propagation neural network (BPNN) and wavelet neural network (WNN). The mean absolute error (MAE) of predicting construction accidents is 0.2225, with small fluctuations in the predicted results. The mean absolute percentage error (MAPE) of the predictions is 0.6048%. The research results indicate that IASO‐BPNN has higher prediction accuracy than standard BPNN and WNN, providing judgment methods for ensuring construction progress and decision support for construction organization decision‐makers.

Publisher

Wiley

Subject

General Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3