Adaptive optimized fractional order control of doubly‐fed induction generator (DFIG) based wind turbine using disturbance observer

Author:

Veisi Amir1,Delavari Hadi1ORCID

Affiliation:

1. Department of Electrical Engineering Hamedan University of Technology Hamedan Iran

Abstract

AbstractWind energy systems are pollution free and clean form of the renewable energy production. The dynamic model of a wind turbine system based on a doubly fed induction generator (DFIG) is exposed to external disturbances, uncertainties, and nonlinear dynamics. In this paper to ensure the system robustness against external disturbance and uncertainty in system parameters, a novel optimized fractional order robust adaptive sliding mode controller is proposed by utilizing a disturbance observer. The controller's main goal is to track the maximum power point of the wind turbine. In order to show the superiority of the proposed method, the results under normal conditions and in the presence of disturbance and uncertainty have been compared with the classical sliding mode control (SMC) and adaptive sliding mode control (ASMC). The parameters of all three controllers have been optimized by ant colony optimization (ACO) algorithm. The proposed method does not need the knowledge of the upper bounds of model uncertainty and disturbance. Also by using the fractional order operators in the control signal of the proposed method, its robustness against model uncertainty and disturbance is increased and it can extract the maximum power than the other compared methods.

Funder

Hamedan University of Technology

Iran National Science Foundation

Publisher

Wiley

Subject

General Environmental Science,Waste Management and Disposal,Water Science and Technology,General Chemical Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3