Adaptive fractional backstepping intelligent controller for maximum power extraction of a wind turbine system

Author:

Veisi Amir1ORCID,Delavari Hadi1ORCID

Affiliation:

1. Department of Electrical Engineering, Hamedan University of Technology , Hamedan, Iran

Abstract

Controlling wind power plants is a challenging issue, however. This is due to its highly nonlinear dynamics, unknown disturbances, parameter uncertainties, and quick variations in the wind speed profiles. So robust controllers are needed to overcome these challenges. This paper suggests two novel control approaches for doubly fed induction generator-based wind turbines. Its key objective is to regulate the generator speed and rotor currents. A radial basis function (RBF) neural network disturbance observer based fractional order backstepping sliding mode control (SMC) is presented to control the rotor currents. This RBF neural network-based disturbance observer estimates unknown disturbances. Also, a new adaptive fractional order terminal SMC is suggested for the control of the generator speed. This robust chattering-free controller that does not require any information about the bound of uncertainties fractional calculus is adopted in the SMC design to eliminate undesired chattering phenomena. The controller parameters are optimally tuned utilizing the ant colony optimization algorithm. The proposed approach was validated using a simulation study entailing various conditions. Its performance was also compared to that of the conventional backstepping and conventional backstepping sliding mode controller. The simulations results verified the approach's ability to maximize power extraction from the wind and properly regulate the rotor currents. The proposed method has about 20% less tracking error than the other two methods, which means 20% higher efficiency.

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

Reference39 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3