Radiofrequency safety of high permittivity pads in MRI—Impact of insulation material

Author:

Brink Wyger M.12ORCID,Remis Rob F.3ORCID,Webb Andrew G.1ORCID

Affiliation:

1. C.J. Gorter Center for High Field MRI, Department of Radiology Leiden University Medical Center Leiden The Netherlands

2. Magnetic Detection & Imaging Group, TechMed Centre University of Twente Enschede The Netherlands

3. Circuits and Systems Group, Department of Microelectronics Delft University of Technology Delft The Netherlands

Abstract

PurposeHigh permittivity dielectric pads are known to be effective for tailoring the RF field and improving image quality in high field MRI. Despite a number of studies reporting benign specific absorption rate (SAR) effects, their “universal” safety remains an open concern. In this work, we evaluate the impact of the insulation material in between the pad and the body, using both RF simulations as well as phantom experiments.MethodsA 3T configuration with high permittivity material was simulated and characterized experimentally in terms of B1+ fields and RF power absorption, both with and without electrical insulation in between the high permittivity material and the sample. Different insulation conditions were compared, and electromagnetic analyses on the induced current density were performed to elucidate the effect.ResultsIncreases in RF heating of up to 49% were observed experimentally in a tissue‐mimicking phantom after removing the material insulation. The B1+ magnitude and RF transceive phase were not affected. Simulations indicated that an insulation thickness of 0.5–2 mm should be accounted for in numerical models in order to ensure reliable results.ConclusionA reliable RF safety assessment of high permittivity dielectric pads requires accounting for the insulating properties of the plastic encasing. Ignoring the electrical insulation can lead to erroneous results with substantial increases in local SAR at the interface. Conversely, the material insulation does not need to be modeled to predict the B1+ effects during the design of the pad geometry.

Funder

H2020 European Research Council

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3