A review of recent developments and applications of high‐permittivity dielectric shimming in magnetic resonance

Author:

Jacobs Paul S.1ORCID,Brink Wyger2,Reddy Ravinder1

Affiliation:

1. Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology University of Pennsylvania Philadelphia Pennsylvania USA

2. Magnetic Detection and Imaging group, TechMed Centre University of Twente Enschede The Netherlands

Abstract

We present a review outlining the basic mechanism, background, recent technical developments, and clinical applications of aqueous dielectric padding in the field of MRI. Originally meant to be a temporary solution, it has gained traction as an effective method for correcting B1+ inhomogeneities due to the unique properties of the calcium titanate and barium titanate perovskites used. Aqueous dielectric pads have used a variety of high‐permittivity materials over the years to improve the quality of MRI acquisitions at 1.5 and 3 T and more recently for 7 T neuroimaging applications. The technical development and assessment of these pads have been advanced by an increased use of mathematical modeling and electromagnetic simulations. These tools have allowed for a more complete understanding of the physical interactions between dielectric pads and the RF coil, making testing and safety assessments more accurate. The ease of use and effectiveness that dielectric pads offer have allowed them to become more commonplace in tackling imaging challenges in more clinically focused environments. More recently, they have seen usage not only in anatomical imaging methods but also in specialized metabolic imaging sequences such as GluCEST and NOEMTR. New colossally high‐permittivity materials have been proposed; however, practical utilization has been a continued challenge due to unfavorable frequency dependences as well as safety limitations. A new class of metasurfaces has been under development to address the shortcomings of conventional dielectric padding while also providing increased performance in enhancing MRI images.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3