Developing thermally stable beverage emulsions using mildly fractionated pea proteins

Author:

Devaki Neksha Diwakar1,Ghosh Supratim1ORCID

Affiliation:

1. Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon Saskatchewan Canada

Abstract

AbstractOil‐in‐water emulsions are widely used as the base flavoring or clouding agents in various beverages. Pulse proteins can play a major role as a natural emulsifier in beverages. However, the presence of insoluble components greatly minimizes their potential application in beverage emulsions. In this work, pea protein concentrate was mildly fractionated by aqueous centrifugation to recover a soluble fraction with 71% protein yield, which was then used to develop 5% oil‐in‐water emulsions using a high‐pressure homogenizer. Emulsion stability was tested by heat treatment (90°C, 30 min) in the presence of NaCl (0–1 M) at pH 7.0 and 2.0. Stability increased upon the addition of salt at pH 7, while at pH 2, proteins and droplets aggregated. Heat treatment led to extensive aggregation at both pH values, which was further worsened by salt. To prevent thermal destabilization, the proteins were heat‐treated at 75°C for 30 min for partial denaturation before emulsification under hot conditions. The heat‐treated protein‐stabilized emulsions at pH 7 had superior thermal stability at all salt concentrations without aggregation. However, a similar improvement was not observed at pH 2. Pre‐heating the soluble protein exposed the hydrophobic patches, leading to better adsorption on the droplet surface, which did not show additional aggregation upon further heating the emulsions at pH 7. Interestingly, heat‐treated protein‐stabilized emulsions showed a 44% drop in lipid digestibility compared to the original emulsions. The proposed approach could be a valuable addition to the utilization of pea proteins in beverage emulsions that could withstand heat treatment during food processing.

Funder

Natural Sciences and Engineering Research Council of Canada

Ministry of Agriculture - Saskatchewan

Canada Foundation for Innovation

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3