A modified tilt controller for AGC in hybrid power system integrating forecasting of renewable energy sources

Author:

Vidyarthi Prabhat Kumar1ORCID,Kumar Ashiwani1

Affiliation:

1. Electrical Engineering Department National Institute of Technology Patna Patna Bihar India

Abstract

AbstractThis article emphasizes the intermittent characteristics of renewable energy sources (RESs) and explores the role of forecasting in improving the performance of the automatic generation control (AGC) mechanism of the interconnected power system. Due to hybridization of power system basic AGC controller (PID, TID, and ID‐T) are insufficient to stabilized the system parameters. So, a new type of fractional order integral tilted derivative controller (FIDN‐T) has been proposed, which give better performance in terms of settling time, undershoot and overshoot in case of RESs with real data forecasting also. FIDN‐T has been compared with some existing controller which give the results better than basic controller. In order to optimize the different parameters of the proposed controller, a new modified Opposition‐based Sea‐horse Optimization (OSHO) algorithm has been proposed. The OSHO is compared with a few existing, well‐known meta‐heuristic algorithms to show its superiority. The analysis has been conducted under different operating conditions, including step and random disturbances as well as the IEEE‐39 bus, to verify the robustness as well as adaptability of the suggested controller. The comprehensive results of the studies provide strong evidence in support of the effectiveness and efficacy of the suggested control methods and suggest that it has the potential to be implemented in real‐world power systems for improved performance and stability.

Publisher

Wiley

Subject

Applied Mathematics,Control and Optimization,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3