Enhancing frequency regulation in multi‐area interconnected MPS with virtual inertia using MPC + PIDN controller

Author:

Vidyarthi Prabhat Kumar1ORCID,Kumar Ashiwani1

Affiliation:

1. Department of Electrical Engineering National Institute of Technology Patna Patna India

Abstract

AbstractThe challenge of controlling frequency deviation becomes more difficult as the complexity of a power network increases. The robustness of the controller has a major impact on the stability of a Modern Power system (MPS). Due to the hybridization of MPS basic AGC controllers (PID, FOPID, and TID) are insufficient to give optimal performance of a plant. This requires a robust controller. So, a novel MPC + PIDN controller has been proposed and evaluated by comparing it with several existing controllers, which gives optimal performance in terms of overshoot, undershoot, and settling time. A new modified Opposition‐based Sea‐horse Optimization (OSHO) method has been suggested to optimize the various controller settings. To demonstrate the OSHO's superiority, it is compared with a few popular, existing meta‐heuristic optimizations. The higher penetration levels of RESs reduced system inertia which further deteriorate frequency response in MPS. To overcome these challenges virtual inertia (VI) is implemented with MPC. VI is applied to improve the performance of the AGC of the interconnected MPS along with emphasizing the nature of intermittent renewable energy sources (RESs) of PV and wind energy. To determine the reliability and flexibility of the proposed controller, analysis has been done under a different situation, including step, random disturbances, and modified IEEE‐39 bus. Finally, the stability analysis is performed on a bode plot and the proposed results are compared with previously published literature. The extensive study demonstrates strong evidence that the suggested control approach is efficient and effective.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3