Asymmetric Overgrowth of Au/AuPt/PtSe2 and Au/AgPtSe2 Heterorods for Optimizing Nonlinear Enhancements

Author:

Dou Zhen‐Long12,Cheng Li1,Wu Zhi‐Yong1,Chen Li‐Jiong13,Zhou Li1ORCID,Wang Qu‐Quan2

Affiliation:

1. Key Laboratory of Artificial Micro‐ and Nano‐Structures of the Ministry of Education Hubei Nuclear Solid Physics Key Laboratory School of Physics and Technology Wuhan University Wuhan 430072 China

2. Department of Physics College of Science Southern University of Science and Technology Shenzhen 518055 China

3. National Laboratory of Solid State Microstructures School of Physics and Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China

Abstract

AbstractFavorable growth of asymmetric hetero‐nanostructures consisting of plasmonic metals and semiconductors or topological nanomaterials is highly desired because the performance of nonlinear optical antennas is closely related to their composition and morphology symmetry. In this work, two methods are proposed to overgrow PtSe2, a semiconductor or topological semimetal material, onto Au nanorods (AuNRs) to form Au/AuPt/PtSe2 and Au/AgPtSe2 heterorods via wet chemical technique. Both Au/AuPt/PtSe2 and Au/AgPtSe2 heterorods show asymmetric morphologies: the Au/AuPt/PtSe2 heterorods show a partially hollow morphology with an etched AuNR coated by AuPt and PtSe2 shells; the Au/AgPtSe2 heterorods prepared by Ag‐mediated overgrowth method have a toothbrush shape with AgPtSe2 attached on the side surface near one end of AuNRs. The two asymmetric heterorods show significantly enhanced nonlinear radiations of second harmonic generation with the excitation laser wavelength tuning from 1220 to 1315 nm, and a maximal nonlinear enhancement factor of 16 is achieved, which is attributed to the interaction of gold core with platinum selenide shell and the broken symmetry of heterostructures. The findings provide a strategy to prepare metal‐topological heterostructures as optical antennas with optimized performance in the application of nonlinear photonic nanodevices.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3