Energy Transfer in Mixed Lanthanides Complexes: Toward High‐Performance Pressure Sensors Based on the Luminescence Intensity Ratio

Author:

Zhou Yujiao12ORCID,Ledoux Gilles3ORCID,Bois Laurence1ORCID,Pilet Guillaume1ORCID,Colombo Margherita1,Jeanneau Erwann4ORCID,Lafarge Lionel2,Journet Catherine1ORCID,Descartes Sylvie2ORCID,Philippon David2ORCID

Affiliation:

1. Laboratoire des Multimatériaux et Interfaces UMR CNRS 5615 Université Lyon1‐CNRS 6, rue Victor Grignard Villeurbanne Cedex 69622 France

2. Univ Lyon Institut National des Sciences Appliquees de Lyon INSA Lyon Centre national de la recherche scientifique (CNRS) Laboratoire de mecanique des contacts et des structures (LaMCoS) – UMR5259 27 bis Av. Jean Capelle Villeurbanne 69621 France

3. Institut Lumière Matière UMR CNRS 5306 Université Lyon1‐CNRS 10 Rue Ada Byron Villeurbanne Cedex 69622 France

4. Centre de Diffractométrie Henri Longchambon Université Lyon1‐CNRS Villeurbanne Cedex 69622 France

Abstract

AbstractIn this study, a reversible pressure‐sensing material with high sensitivity is presented. Mixed β‐diketonate complexes of Tb3+ and Eu3+ [(Ln)(acac)3phen] are synthesized with phenanthroline as an ancillary ligand. The organic ligands provide the antenna effect to make the Ln3+ complex excitable at 405 nm. Eu3+ emission results from efficient energy transfer (ET) from Tb3+. Under 405 nm excitation, the emission intensity of Tb3+ decreases whereas the emission intensity of Eu3+ increases with pressure, making this complex a potential pressure sensor based on luminescent‐intensity‐ratio (LIR) up to 700 MPa. This study then discusses the application of this Tb3+/Eu3+ complex for pressure sensing depending on measurement conditions. The addition of the optically neutral ion Y3+ to the system can reduce the impact of pressure‐induced structural defects on the emission, thus improving the reversibility of the LIR variation as a function of pressure. Therefore, a self‐calibrating, reliable, and reversible pressure‐sensing material is proposed here, with remarkable pressure sensitivity compared to a peak shift‐based pressure sensor.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3