Tailoring Ultra‐Wide Visible‐NIR Luminescence by Ce3+/Cr3+/Yb3+‐alloying Sc‐Based Oxides for Multifunctional Optical Applications

Author:

Zhang Min12,Dang Peipei1,Wan Yujia12,Wang Yingsheng12,Zeng Zixun12,Liu Dongjie1,Zhang Qianqian12,Li Guogang34,Lin Jun12ORCID

Affiliation:

1. State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China

2. School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China

3. Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China

4. Zhejiang Institute China University of Geosciences Hangzhou 311305 P. R. China

Abstract

AbstractVisible‐to‐near‐infrared (VIS‐NIR) luminescent materials are in great demand in the field of non‐destructive testing such as component determination and hyperspectral imaging. Although Cr3+‐activated phosphors are widely reported, controllable tailoring ultra‐wide VIS‐NIR luminescence excited by blue light is still a challenge. The strategies of cationic substitution and energy transfers are effective for adjusting the luminescence of Cr3+‐activated phosphors. In this work, a series of Cr3+‐doped Sc‐based solid solution phosphors (Ba3‐mSrmSc4O9:Cr3+) are reported. Under the excitation of blue light, these phosphors exhibit broadband emission due to the different luminescence centers induced by Cr3+ occupying different cationic sites. Because of the weaker crystal field strength, Cr3+ realizes a broadband emission with a longer peak position (λem = 820 nm) and broader full width at half maximum (FWHM≈182 nm) in Ba2SrSc4O9. Furthermore, Ce3+/Yb3+ ions are introduced into Ba2SrSc4O9:Cr3+, achieving an ultra‐wide VIS‐NIR luminescence (460–1200 nm) by the Ce3+→Cr3+→Yb3+ multiple energy transfers. Designing energy transfers is beneficial to improve the quantum efficiency and weaken the thermal quenching. Finally, the NIR phosphor‐converted light‐emitting diode (pc‐LED) fabricated by Ba2SrSc4O9:Cr3+ demonstrates great potential in night‐vision and water component detection. This work provides an effective design idea for controllable tailoring ultra‐wide VIS‐NIR luminescence by chemical substitution and energy transfer.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3