Origin of the Unusual High Optical Nonlinearities Observed in Glassy Chalcogenides

Author:

Dory Jean‐Baptiste1,Ibnoussina Meryem2,Raty Jean‐Yves13,Jager Jean‐Baptiste4,Verdy Anthonin1,Coillet Aurélien2,Colman Pierre2,Albanese Anthony1,Tomelleri Martina1,Cluzel Benoit2,Noé Pierre1ORCID

Affiliation:

1. Université Grenoble Alpes CEA Leti Grenoble F‐38000 France

2. ICB UMR CNRS 6303 Université Bourgogne Dijon cedex F‐21078 France

3. Condensed Matter Simulation CESAM B5 Université de Liège Sart‐Tilman B4000 Belgium

4. Université Grenoble Alpes CEA Grenoble INP IRIG PHELIQS Grenoble F‐38000 France

Abstract

AbstractNonlinear photonics integrated at the chip scale opens the path to new applications in an increasing number of fields such as all‐optical computing, high bit rate communications on chip, or embedded sensing with frequency combs and super‐continuum sources. All these applications require materials having the best trade‐off between optical losses, Kerr refractive index, and compatibility with current nanofabrication facilities. Although optimizing the nanofabrication process can minimize linear optical losses to some extent, optimizing the Kerr index of the materials remains challenging because a clear understanding of the link between atomic structure and optical nonlinearities is still missing. This is precisely what this work addresses for chalcogenide glasses based on thin films of Ge‐Sb‐Se alloys, a promising class of materials fully compatible with large‐scale integration technology from the microelectronics industry. By coupling nonlinear Kerr index metrology with ab initio molecular dynamics calculations of amorphous models, this work unveils the unique molecular patterns in these alloys that are responsible for their unusual nonlinear polarizability. This provides for the first time valuable rules for the design of new optical materials with improved Kerr index enabling miniaturization and implementation of future nonlinear photonic devices that can then operate at significantly lower power.

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3