Deep Learning Design for Multiwavelength Infrared Image Sensors Based on Dielectric Freeform Metasurface

Author:

Xiong Bo1,Xu Yihao2,Li Wenwen1,Ma Wei1ORCID,Chu Tao1,Liu Yongmin23

Affiliation:

1. College of Information Science and Electronic Engineering Zhejiang University Hangzhou 310027 China

2. Department of Mechanical and Industrial Engineering Northeastern University Boston MA 02115 USA

3. Department of Electrical and Computer Engineering Northeastern University Boston MA 02115 USA

Abstract

AbstractNear‐infrared multispectral imaging technology enhances target detection and recognition by distinguishing the spectral characteristics of various targets. However, traditional imaging systems heavily rely on complex optical filter designs that are often bulky and mechanically unstable, posing significant challenges for miniaturization and integration challenging. In this study, a freeform dielectric metasurface with the wavelength‐multiplexing focusing effect based on a deep learning model is designed, which can separate the mixed near‐infrared light into distinct wavelengths. To effectively modulate the complex amplitude of the transmitted light at three distinct near‐infrared wavelengths (1150, 1350, and 1550 nm), high‐index silicon freeform nanostructures supporting rich resonant modes are proposed. An inverse design model based on deep learning is utilized to generate individual freeform nanostructures pixel by pixel, satisfying the complex amplitude requirement for a multiplexed metalens design. Both the simulated and experimental results show that the wavelength‐multiplexing effect of the devices is in good agreement with the target with negligible crosstalk. Finally, a metasurface is employed to realize near‐infrared multispectral imaging, which allows for the distinct detection and decoding of images at the three target wavelengths. The proposed technology has a wide range of applications in clinical medicine, biological tissue imaging, and deep‐space exploration.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3