Deep learning for in vivo near-infrared imaging

Author:

Ma ZhuoranORCID,Wang Feifei,Wang Weizhi,Zhong Yeteng,Dai Hongjie

Abstract

Detecting fluorescence in the second near-infrared window (NIR-II) up to ∼1,700 nm has emerged as a novel in vivo imaging modality with high spatial and temporal resolution through millimeter tissue depths. Imaging in the NIR-IIb window (1,500–1,700 nm) is the most effective one-photon approach to suppressing light scattering and maximizing imaging penetration depth, but relies on nanoparticle probes such as PbS/CdS containing toxic elements. On the other hand, imaging the NIR-I (700–1,000 nm) or NIR-IIa window (1,000–1,300 nm) can be done using biocompatible small-molecule fluorescent probes including US Food and Drug Administration-approved dyes such as indocyanine green (ICG), but has a caveat of suboptimal imaging quality due to light scattering. It is highly desired to achieve the performance of NIR-IIb imaging using molecular probes approved for human use. Here, we trained artificial neural networks to transform a fluorescence image in the shorter-wavelength NIR window of 900–1,300 nm (NIR-I/IIa) to an image resembling an NIR-IIb image. With deep-learning translation, in vivo lymph node imaging with ICG achieved an unprecedented signal-to-background ratio of >100. Using preclinical fluorophores such as IRDye-800, translation of ∼900-nm NIR molecular imaging of PD-L1 or EGFR greatly enhanced tumor-to-normal tissue ratio up to ∼20 from ∼5 and improved tumor margin localization. Further, deep learning greatly improved in vivo noninvasive NIR-II light-sheet microscopy (LSM) in resolution and signal/background. NIR imaging equipped with deep learning could facilitate basic biomedical research and empower clinical diagnostics and imaging-guided surgery in the clinic.

Funder

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3