Light Reconfigurable Topological Optical Phase Structure Enabled by a Photoresponsive Chiral System

Author:

Wang Xiao‐Qian1ORCID,Tam Alwin Ming‐Wai2,Yang Wei‐Qiang1,Kiselev Alexei D.3,Shen Dong1,Chigrinov Vladimir2,Kwok Hoi‐Sing2,Li Quan45ORCID

Affiliation:

1. School of Physics East China University of Science and Technology Shanghai 200237 P. R. China

2. State Key Laboratory on Advanced Displays and Optoelectronics Technologies Hong Kong University of Science and Technology Hong Kong 999077 P. R. China

3. Mechanics and Optics Saint Petersburg National Research University of Information Technologies Saint Petersburg 197101 Russia

4. Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 P. R. China

5. Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program Kent State University Kent OH 44242 USA

Abstract

AbstractThe ability to establish significant phase modulation at low applied field provides a promising route toward polarization control and wavefront shaping for liquid‐crystal‐based devices. Owing to the polarization‐selective reflectivity of chiral liquid crystals (CLCs), reflective wavefront shaping via geometric phase is demonstrated when a circularly polarized light is Bragg reflected by a spatially orientated chiral layer. Nowadays, photoresponsive CLCs have attracted extensive attention due to their exotic feature that endows the CLC devices with the capability of electric‐free remote control. Despite the mature photoresponsive CLC materials and the sophisticated reflective geometric phase devices, a light‐induced topological optical phase modulation for a transmissive wave exiting a CLC cell remains elusive. Here, with the employment of a photosensitive chiral dopant, a hybrid aligned photoresponsive CLC system, demonstrating the simultaneous light modulation of topological geometric phase and dynamic phase via helical pitch manipulation is established. The continuous dual‐phase modulation engenders a smooth optically controllable diffraction efficiency (i.e., from <5% to >90%) of the proposed light‐reconfigurable CLC geometric phase optical element prototypes with multistable diffractive behavior, thus launching a paradigm shift for the application of novel liquid‐crystal photonic devices in the field of all‐optical polarization and spin processing.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3