Affiliation:
1. Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
2. CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
Abstract
AbstractThe fabrication of materials that can switch between circularly polarized luminescence (CPL) signals is both essential and challenging. Here, two new halogen‐bonded fluorescent molecular photoswitches, namely, HB‐switch 1 and HB‐switch 2, containing α‐cyano‐substituted diarylethene compounds with different end groups were developed. Upon exposure to specific UV or visible light wavelengths, they exhibited controllable and reversible Z/E photoisomerization. When these switches were integrated into blue‐phase liquid crystals (BPLCs), the temperature range of BP significantly expanded. Notably, the BP system incorporating HB‐switch 1 exclusively achieved reversible polarization inversion of CPL signals under irradiation with specific UV/Visible light and during cooling/heating. The photo/thermal dual‐response behavior of the CPL signals can be attributed to the phase transition from a high‐symmetry 3D BP Icubic lattice to a low‐symmetry 1D helical superstructure induced by the Z/E photoisomerization of HB‐switch 1 and temperature changes. This study underscores the significance of employing halogen‐bond assembly strategies to design materials with switchable CPL signals, opening new possibilities for CPL‐active systems.
Funder
National Natural Science Foundation of China