Multiple Charge Transfer Processes Enable Blue Emitter for Highly Efficient OLEDs

Author:

Wang Zhichuan123,Li Deli4,Li Wei12,Zhang Jiasen12,Luo Ming12,Du Songyu12,Zhang Xiaoli3,Xu Shengang3,Ge Ziyi12ORCID

Affiliation:

1. Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China

3. School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 P. R. China

4. State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices South China University of Technology Wushan Road 381, Tianhe District Guangzhou Guangdong Province 510640 P. R. China

Abstract

AbstractSolely through‐space charge transfer (TSCT)‐type thermally activated delayed fluorescent (TADF) emitters exhibit low radiative decay rates (), while solely through‐bond charge transfer (TBCT) type TADF emitters generally suffer from low reverse intersystem crossing (RISC) rates (kRISC). Here, PhCzSpiroS‐TRZ with versatile spiro‐heterocyclic architecture and an extra donor of 9‐phenyl‐9H‐carbazole are developed as emitter and ideal host for TADF‐ and TADF‐sensitized fluorescence (TSF) organic light‐emitting diodes (OLEDs) in detail. Abandoning solely TSCT or TBCT process, PhCzSpiroS‐TRZ with multiple charge transfer characteristic exhibits photoluminescence quantum yield of 96.3% and of 2.2 × 107 s−1, which is considerably higher among all the reported TSCT‐TADF molecules. Noticeably, state‐of‐the‐art blue OLEDs using PhCzSpiroS‐TRZ as emitter and sensitizer show maximum external quantum efficiencies (EQEs) of 33.6% and 32.8%, ranking among TADF materials for achieving EQEs >30% in both TADF‐ and TSF‐OLEDs.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3