Energy Gain and Loss Processes in OLEDs with Spacer‐Separated Electron–Hole Pairs Investigated by Magnetic Field Effects

Author:

Liu Chenghao1,Chen Zhen1,Du Huitian1,Yu Yuan1,Ren Junfeng2,Fan Jihui1,Han Shenghao1,Pang Zhiyong1ORCID

Affiliation:

1. School of Microelectronics Shandong University Jinan 250100 P. R. China

2. School of Physics and Electronics Shandong Normal University Jinan 250358 P. R. China

Abstract

AbstractInterfacial or diluted exciplex organic light emitting diodes (OLEDs) with spacer‐separated electron–hole pairs have emerged as a promising approach for precise tuning the energy level of charge‐transfer (CT) excitons and the improvement in device performance. However, their microscopic energy gain and loss mechanisms are not well understood. In this study, magnetic field effects (MFEs) including magneto‐electroluminescence (MEL), magneto‐conductance (MC), and magneto‐efficiency (Mη) in two series of donor‐spacer‐acceptor type exciplex‐based OLEDs, which exhibited opposite distance‐dependent device performances, are studied to explore the microscopic dynamics of spacer‐separated electron–hole pairs. Intersystem crossing (ISC) between CT excitons and between polaron‐pairs, reverse intersystem crossing (RISC) between CT excitons, triplet–triplet annihilation (TTA), scattering and dissociation channels of triplet‐charge annihilation (TQA), and additional Dexter energy transfer (DET) processes are identified. The decreased external quantum efficiency (EQE) and MEL with increasing thickness of space layer in Configuration II devices are attributed to an activation of the potential DET process from the lowest triplet of spacer‐separated CT excitons to the lowest triplet of Bphen caused by their smaller energy gaps. The study offers in‐depth insights into the exciton utilization and energy loss, which may allow better design and optimization of space‐modulated OLEDs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3