THz Ultra‐Strong Light–Matter Coupling up to 200 K with Continuously‐Graded Parabolic Quantum Wells

Author:

Goulain Paul1ORCID,Deimert Chris23ORCID,Jeannin Mathieu1ORCID,Pirotta Stefano1,Pasek Wojciech Julian4ORCID,Wasilewski Zbigniew2567ORCID,Colombelli Raffaele1ORCID,Manceau Jean‐Michel1ORCID

Affiliation:

1. Centre de Nanosciences et de Nanotechnologies CNRS UMR 9001 University of Paris‐Saclay Palaiseau 91120 France

2. Department of Electrical and Computer Engineering University of Waterloo 200 University Ave W Waterloo ON N2L 3G1 Canada

3. National Research Council of Canada Ottawa K1A 0R6 Canada

4. Faculdade de Ciências Aplicadas Universidade Estadual de Campinas Limeira São Paulo 13484‐350 Brazil

5. Institute for Quantum Computing University of Waterloo 200 University Ave W Waterloo ON N2L 3G1 Canada

6. Waterloo Institute for Nanotechnology University of Waterloo 200 University Ave W Waterloo ON N2L 3G1 Canada

7. Department of Physics and Astronomy University of Waterloo 200 University Ave W Waterloo ON N2L 3G1 Canada

Abstract

AbstractContinuously graded parabolic quantum wells with excellent optical performances are used to overcome the low‐frequency and thermal limitations of square quantum wells at terahertz (THz) frequencies. The formation of microcavity intersubband polaritons at frequencies as low as 1.8 THz is demonstrated, with a sustained ultra‐strong coupling regime up to a temperature of 200 K. Thanks to the excellent intersubband transition linewidth, polaritons present quality factors up to 17. It is additionally shown that the ultra‐strong coupling regime is preserved when the active region is embedded in sub‐wavelength resonators, with an estimated relative strength η = ΩR0 = 0.12. This represents an important milestone for future studies of quantum vacuum radiation because such resonators can be optically modulated at ultrafast rates, possibly leading to the generation of non‐classical light via the dynamic Casimir effect. Finally, with an effective volume of , it is estimated that fewer than 3000 electrons per resonator are ultra‐strongly coupled to the quantized electromagnetic mode, proving it is also a promising approach to explore few‐electron polaritonic systems operating at relatively high temperatures.

Funder

H2020 Future and Emerging Technologies

Agence Nationale de la Recherche

Canada First Research Excellence Fund

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3