High-quality CMOS compatible n-type SiGe parabolic quantum wells for intersubband photonics at 2.5–5 THz

Author:

Campagna Elena1ORCID,Talamas Simola Enrico1ORCID,Venanzi Tommaso2,Berkmann Fritz3,Corley-Wiciak Cedric4,Nicotra Giuseppe5,Baldassarre Leonetta3,Capellini Giovanni14,Di Gaspare Luciana1,Virgilio Michele6,Ortolani Michele23ORCID,De Seta Monica1

Affiliation:

1. Dipartimento di Scienze , Università; degli Studi Roma Tre , Viale G. Marconi 446 , Roma 00146 , Italy

2. Center for Life Nano & Neuro Science , Istituto Italiano di Tecnologia , Viale Regina Elena 291, 00161 Rome , Italy

3. Department of Physics , “Sapienza” Università di Roma , Piazzale Aldo Moro 2, 00185 Rome , Italy

4. IHP-Leibniz Institut für Innovative Mikroelektronik , Im Technologiepark 25 , Frankfurt (Oder) 15236 , Germany

5. Istituto per la Microelettronica e Microsistemi (CNR-IMM) , VIII Strada 5 , Catania 95121 , Italy

6. Dipartimento di Fisica “E. Fermi” , Università; di Pisa , Largo Pontecorvo 3 , Pisa 56127 , Italy

Abstract

Abstract A parabolic potential that confines charge carriers along the growth direction of quantum wells semiconductor systems is characterized by a single resonance frequency, associated to intersubband transitions. Motivated by fascinating quantum optics applications leveraging on this property, we use the technologically relevant SiGe material system to design, grow, and characterize n-type doped parabolic quantum wells realized by continuously grading Ge-rich Si1−x Ge x alloys, deposited on silicon wafers. An extensive structural analysis highlights the capability of the ultra-high-vacuum chemical vapor deposition technique here used to precisely control the quadratic confining potential and the target doping profile. The absorption spectrum, measured by means of Fourier transform infrared spectroscopy, revealed a single peak with a full width at half maximum at low and room temperature of about 2 and 5 meV, respectively, associated to degenerate intersubband transitions. The energy of the absorption resonance scales with the inverse of the well width, covering the 2.5–5 THz spectral range, and is almost independent of temperature and doping, as predicted for a parabolic confining potential. On the basis of these results, we discuss the perspective observation of THz strong light–matter coupling in this silicon compatible material system, leveraging on intersubband transitions embedded in all-semiconductor microcavities.

Funder

Regione Lazio

Ministero dell’Istruzione e del Merito

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3