Achieving Highly Efficient Orange Emission in Tin (IV)‐Based Metal Halides with Outstanding Anti‐Water Stability Through Antimony Doping and Reasonable Structural Modulation

Author:

Ke Bao12,Peng Hui1ORCID,Wei Qilin12,Yang Chengzhi2,Li Xueping3,Huang Weiguo2,Du Zhentao1,Zhao Jialong12,Zou Bingsuo1ORCID

Affiliation:

1. State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite Structures MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials and School of Resources Environment and Materials Guangxi University Nanning 530004 China

2. School of Physical Science and Technology Guangxi University Nanning 530004 China

3. School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 China

Abstract

AbstractRecently, 0D metal halides have attracted widespread interest because of their diverse structures and rich luminescence properties. Nevertheless, the controllable synthesis of metal halide clusters with the ideal configuration using chemical methods remains a great challenge. In addition, the relationship between the coordination configuration and the optical properties of 0D metal halides is not well understood. In this study, two homologous Sb3+‐doped 0D Sn (IV)‐based metal halides with different coordination configurations are developed by inserting a single organic ligand, tetrabutylphosphonium chloride (TBPCl), into a SnCl4 lattice, resulting in different optical properties. Under photoexcitation, Sb3+‐doped (TBP)SnCl5·DMF shows a negligible luminescence from the organic cation of TBP+, while Sb3+‐doped (TBP)2SnCl6 shows a bright orange emission band at 650 nm with a photoluminescence quantum yield (PLQY) of 99%. The above two compounds show quite different optical properties, which should be due to the too‐large lattice distortion of Sb3+‐doped (TBP)SnCl5·DMF, and the DMF will cause the efficient non‐radiation relaxation. In particular, Sb3+‐doped (TBP)2SnCl6 exhibits remarkable anti‐water stability, which shows stability in water for 48 h without structural degradation, and the luminous intensity remains at a high level. Combined with its excellent optical properties and impressive stability, Sb3+‐doped (TBP)2SnCl6 is used in white‐light‐emitting diodes (WLED).

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3