Doping Mn2+ in a New Layered Halide Double Perovskite PPA4NaInCl8 (PPA+ = C6H5(CH2)3NH3+): Dimensional Reduction Accelerating Mn2+ Dissolution and Separation for Efficient Light Emission

Author:

Li Zhongyuan1ORCID,Li Bin2,Liu Wuqi1,Yan Dong1,Tang Qiang1,Fang Zhen1,Xie Rong‐Jun3

Affiliation:

1. Key Laboratory of Functional Molecular Solids Ministry of Education and College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China

2. New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science Nanjing University of Posts and Telecommunications Nanjing 210023 P. R. China

3. State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Materials Xiamen University Xiamen 361005 P. R. China

Abstract

AbstractMn2+‐activated halide double perovskites (HDPs) are found to show promising luminescent behavior and have great potential for optoelectronic applications. However, such interesting materials hitherto are only limited to compounds with a monotonous three‐dimensional structure and show a low photoluminescence quantum yield (PLQY). Herein, an Mn2+‐doped two‐dimensional (2D) layered HDP PPA4NaInCl8 (PPA+ = C6H5(CH2)3NH3+) showing promising photoluminescence properties is reported. The large separation between the adjacent inorganic sheets and the good dissolution of Mn2+ in the layered structure endow PPA4NaInCl8:Mn2+ with efficient red emission and a record PLQY of 69.90%. The spectroscopic analyses and density functional theory calculations indicate that the inherent absorption and luminescence stem from the inserted organic cations PPA+ in PPA4NaInCl8. An energy transfer process occurs between the singlet excitons from PPA+ and Mn2+, resulting in tunable emission accompanied by the variation of Mn2+ concentration. These results provide several new fundamental insights on doping and doped 2D layered HDPs, which enhances the understanding of structure−property relations in this important family.

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3