Affiliation:
1. Institut für Physik Carl von Ossietzky Universität 26111 Oldenburg Germany
2. Department of Mathematics and Physics North Carolina Central University Durham NC 27707 USA
Abstract
AbstractA confinement‐induced nonlocal electromagnetic response model is applied to study radiative heat transfer processes in transdimensional plasmonic film systems. The results are compared to the standard local Drude model routinely used in plasmonics. The former predicts greater Woltersdorff length in the far‐field and larger film thicknesses at which heat transfer is dominated by surface plasmons in the near‐field, than the latter. The analysis performed suggests that the theoretical treatment and experimental data interpretation for thin and ultrathin metallic film systems must incorporate the confinement‐induced nonlocal effect in order to provide reliable results in radiative heat transfer studies. The fact that the enhanced far‐ and near‐field radiative heat transfer occurs for much thicker films than the standard Drude model predicts is crucial for thermal management applications with thin and ultrathin metallic films and coatings.
Funder
Deutsche Forschungsgemeinschaft
National Science Foundation
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献