Efficient and Stable OLEDs with Inverted Device Structure Utilizing Solution‐Processed ZnO‐Based Electron Injection Layer

Author:

Li Ning1,Li Tianxin2,Li Lin Song1ORCID,Li Jian2ORCID

Affiliation:

1. Key Lab for Special Functional Materials of Ministry of Education and School of Materials Henan University Kaifeng 475004 China

2. Materials Science and Engineering Arizona State University Tempe AZ 85287 USA

Abstract

AbstractTo realize low‐cost, efficient, and stable organic light‐emitting diodes (OLEDs) in future large area displays and lighting, the development of suitable solution‐processed functional materials is highly desirable. Herein, a series of efficient and stable OLEDs with an inverted device architecture is reported, employing both a vapor‐deposited phosphorescent aggregate emitter, i.e., Pd(II) 7‐(3‐(pyridine‐2‐yl‐κN)phenoxy‐κC)(benzo‐κC)([c]benzo[4,5]imidazo‐κN)[1,2‐a][1,5]naphthyridine, and a solution‐processed ZnO layer as potential electron injection layer and electron‐transporting layer. One of the optimized OLED devices exhibits its peak external quantum efficiency (EQE) of 23.9% and retains EQEs of 23.5% and 18.7% at 1000 and 10 000 cd m−2, with a low efficiency roll‐off. Such an efficient device also demonstrates a measured lifetime (LT95) of 98.6 h with an initial brightness of 10 435 cd m−2 corresponding to an estimated LT95 of 5313 h at 1000 cd m−2. By depositing a 2 nm Al on the ZnO surface, an estimated LT95 at 1000 cd m−2 of such a device can be further extended to 73 244 h, making it the longest‐lived OLED reported in the literature domain. This study lays the strong foundation for the future deployment of efficient and stable inverted OLEDs with solution‐processed ZnO layers for a wide range of displays and lighting applications.

Funder

National Natural Science Foundation of China

Universal Display Corporation

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3