Effect of Oxidizing Agent on the Synthesis of ZnO Nanoparticles for Inverted Phosphorescent Organic Light-Emitting Devices without Multiple Interlayers

Author:

Lim Se-Jin1,Kim Hyeon1,Hwang Hyun-A1,Park Hee-Jin1,Moon Dae-Gyu1ORCID

Affiliation:

1. Department of Electronic Materials, Device, and Equipment Engineering, Soonchunhyang University, Asan-si 31538, Republic of Korea

Abstract

Inverted organic light-emitting devices (OLEDs) have been aggressively developed because of their superiorities such as their high stability, low driving voltage, and low drop of brightness in display applications. The injection of electrons is a critical issue in inverted OLEDs because the ITO cathode has an overly high work function in injecting electrons into the emission layer from the cathode. We synthesized hexagonal wurtzite ZnO nanoparticles using different oxidizing agents for an efficient injection of electrons in the inverted OLEDs. Potassium hydroxide (KOH) and tetramethylammonium hydroxide pentahydrate (TMAH) were used as oxidizing agents for synthesizing ZnO nanoparticles. The band gap, surface defects, surface morphology, surface roughness, and electrical resistivity of the nanoparticles were investigated. The inverted devices with phosphorescent molecules were prepared using the synthesized nanoparticles. The inverted devices with ZnO nanoparticles using TMAH exhibited a lower driving voltage, lower leakage current, and higher maximum external quantum efficiency. The devices with TMAH-based ZnO nanoparticles exhibited the maximum external quantum efficiency of 19.1%.

Funder

Soonchunhyang University Research Fund

Regional Innovation Strategy Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3