Pushing the Limits of Metasurface Cloak Using Global Inverse Design

Author:

Wu Nanxuan123,Jia Yuetian123,Qian Chao123,Chen Hongsheng123ORCID

Affiliation:

1. ZJU‐UIUC Institute Interdisciplinary Center for Quantum Information State Key Laboratory of Extreme Photonics and Instrumentation Zhejiang University Hangzhou 310027 P. R. China

2. ZJU‐Hangzhou Global Science and Technology Innovation Center Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang Zhejiang University Hangzhou 310027 P. R. China

3. Jinhua Institute of Zhejiang University Zhejiang University Jinhua 321099 P. R. China

Abstract

AbstractThe breakthroughs of transformation optics and metamaterials have kick‐started the study of modern invisibility cloak since the beginning of this century. Many cloaking methodologies have been progressively proposed for specific application scenarios, among which metasurface cloak is largely welcomed owing to its salient features of negligible thickness, easy fabrication, and low loss. Similar to other cloaking methodologies, however, metasurface cloak suffers from inherent limits that impair it to a convex shape, narrow bandwidth, and small incident angle. Here, a global inverse design is reported to push the limits of metasurface cloak to free form, complementary to conventional physics‐informed approaches. A tandem neural network to build up a bidirectional channel between the metasurface cloak and its electromagnetic response is formulated, in which an ineluctable nonuniqueness issue is mitigated to improve the output accuracy >93%. Compared with conventional metasurface cloak, the foveated cloak underscores intricate coupling and nonlocal effect and widens the bandwidth to 8.5–10.5 GHz and the incident angle to ±45°. These results provide an important step forward to generalizing metasurface cloak and enable a high‐speed surrogate solver required in emerging intelligent meta‐devices.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3