Harnessing the Missing Spectral Correlation for Metasurface Inverse Design

Author:

Zhang Jie123,Qian Chao123,You Guangfeng123,Wang Tao4,Saifullah Yasir123,Abdi‐Ghaleh Reza5,Chen Hongsheng123ORCID

Affiliation:

1. ZJU‐UIUC Institute, Interdisciplinary Center for Quantum Information State Key Laboratory of Extreme Photonics and Instrumentation Zhejiang University Hangzhou 310027 China

2. ZJU‐Hangzhou Global Science and Technology Innovation Center Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang Zhejiang University Hangzhou 310027 China

3. Jinhua Institute of Zhejiang University Zhejiang University Jinhua 321099 China

4. State Key Laboratory of Integrated Service Networks Xidian University Xian 710071 China

5. Department of Laser and Optical Engineering University of Bonab Bonab 5551395133 Iran

Abstract

AbstractA long‐held tenet in computer science asserts that the training of deep learning is analogous to an alchemical furnace, and its “black box” signature brings forth inexplicability. For electromagnetic metasurfaces, the related intelligent applications also get stuck into such a dilemma. Although the past 5 years have witnessed a proliferation of deep learning‐based works across complex photonic scenarios, they neglect the already existing but untapped physical laws. Here, the intrinsic correlation between the real and imaginary parts of the spectra are revealed using Kramers–Kronig relations, which is then mimicked by bidirectional information flow in neural network space. Such consideration harnesses the missing spectral connection to extract crucial features effectively. The bidirectional recurrent neural network is benchmarked in metasurface inverse design and compare it with a fully‐connected neural network, unidirectional recurrent neural network, and attention‐based transformer. Beyond the improved accuracy, the study examines the intermediate information products and physically explains why different network structures yield different performances. The work offers explicable perspectives to utilize physical information in the deep learning field and facilitates many data‐intensive research endeavors.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3