General Characterization of Intelligent Metasurfaces with Graph Coupling Network

Author:

Wu Ouling123,Qian Chao123,Fan Zhixiang123,Zhu Xiaoyue123,Chen Hongsheng123ORCID

Affiliation:

1. ZJU‐UIUC Institute Interdisciplinary Center for Quantum Information State Key Laboratory of Extreme Photonics and Instrumentation Zhejiang University Hangzhou 310027 China

2. ZJU‐Hangzhou Global Science and Technology Innovation Center Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang Zhejiang University Hangzhou 310027 China

3. Jinhua Institute of Zhejiang University Zhejiang University Jinhua 321099 China

Abstract

AbstractIntelligent metasurfaces, as the next‐generation of metasurfaces, have emerged as a versatile artificial electromagnetic (EM) medium capable of adaptively manipulating wave‐matter interactions, especially in the construction of EM space integration and the analogy of wave‐based neural networks. However, current computational landscape for intelligent metasurfaces relies either on time‐consuming full‐wave numerical simulations with excessive computational complexity or on application‐limited physical models that are difficult to consider the coupling effects. Here, a universal graph neural network (GNN) framework is introduced, incorporating the elusive coupling effects inside metasurfaces, enabling rapid and precise characterization with arbitrary‐large size. This framework exhibits exceptional compatibility with physical models, thereby significantly expanding the realm of potential design scenarios. By harnessing the principles of diffraction theory and near‐to‐far transformation algorithms, highly accurate modeling of the scattered fields emanating from metasurfaces is achieved. Through microwave experiments on intelligent metasurfaces, the efficacy of GNN in real‐world scenarios is effectively demonstrated. The utilization of topological strategies to characterize intelligent metasurfaces marks a major leap toward the next‐generation metasurfaces, promising transformative advancements across various applications.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3