Near‐Infrared Light Trapping and Avalanche Multiplication in Silicon Epitaxial Microcrystals

Author:

Falcone Virginia1ORCID,Barzaghi Andrea1ORCID,Signorelli Fabio2,Valente Joao3,Firoozabadi Saleh4,Zucchetti Carlo5ORCID,Bergamaschini Roberto6ORCID,Ballabio Andrea1,Bottegoni Federico5ORCID,Zappa Franco2,Montalenti Francesco6ORCID,Miglio Leo6,Volz Kerstin4,Paul Douglas J.3,Biagioni Paolo5ORCID,Tosi Alberto2ORCID,Isella Giovanni1ORCID

Affiliation:

1. L‐NESS Dipartimento di Fisica Politecnico di Milano Via Anzani 42 Como I‐22100 Italy

2. Dipartimento di Elettronica Informazione e Bioingegneria (DEIB) Politecnico di Milano Piazza Leonardo da Vinci 32 Milan 20133 Italy

3. James Watt School of Engineering University of Glasgow Rankine Building Oakfield Avenue Glasgow G12 8LT UK

4. Materials Science Center and Department of Physics Philipps‐Universität Marburg Hans‐Meerweinstraße 6 35032 Marburg Germany

5. Dipartimento di Fisica Politecnico di Milano Piazza Leonardo da Vinci 32 Milano 20133 Italy

6. L‐NESS and Dipartimento di Scienza dei Materiali Università di Milano‐Bicocca Milano I‐20125 Italy

Abstract

AbstractThe chemical vapor deposition of silicon on a patterned silicon substrate leads to the formation of 3D microcrystals, which, due to their inclined top facets and high aspect ratio, produce a light‐trapping effect enhancing the optical absorption in the near‐infrared (NIR). In this work, it is demonstrated that Si microcrystals can form the building blocks of a new class of NIR sensitive photodetectors operating in a linear or avalanche regime. Microcrystal‐based devices are designed by coupling a 2D kinetic‐growth model with a Poisson drift‐diffusion solver and fabricated by combining electron beam lithography and low‐energy plasma‐enhanced chemical vapor deposition (LEPECVD). The optoelectronic properties of microcrystal‐based pin photodiodes are investigated both theoretically and experimentally by means of finite‐difference time‐domain (FDTD) simulations and responsivity measurements. At 1000 nm wavelength, the responsivity of microcrystal‐based devices is six times higher than that of an equivalent mesa diode. Moreover, the photocurrent gains of Si microcrystals operating as an avalanche photodiode (APD), at the same wavelength, reaches 2 × 104 demonstrating the potentialities of substrate patterning, combined with epitaxial growth, for amplified photodetection applications.

Funder

European Commission

Royal Academy of Engineering

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3