Silica‐Rich Sol‐Gel Ink for Two‐Photon Direct Laser Writing of Microscale Structures and Optical Elements

Author:

Bin Nun Moran1ORCID,Gvishi Raz1ORCID,Dana Yoav2,Garcia Yehudit2,Marom Dan M.2ORCID,Atar Nurit3,Porat Omer1,Bar Galit1ORCID

Affiliation:

1. Applied Physics Division Soreq NRC Yavne 81800 Israel

2. Institute of Applied Physics Hebrew University Jerusalem 9190401 Israel

3. Space Environment Department Soreq NRC Yavne 81800 Israel

Abstract

AbstractInnovative materials enable two‐photon polymerization for precise additive fabrication of intricate optical components. Existing polymeric inks suffer from poor optical performance due to their high organic content. Silica‐rich sol‐gel ink (75 wt%, under ambient conditions) is presented for high‐precision three‐dimensional (3D) printing of microscale structures and optical devices. A photoinitiator with high‐efficiency nonlinear absorption is introduced to initiate two‐photon polymerization. Utilizing a commercial direct laser writing system, 3D‐printing is demonstrated including the optimization of printing parameters and ink characterization. The optical performance of the printed microscale elements using the new sol‐gel ink surpasses commercially available polymeric inks on key metrics: Printed elements exhibit extremely low surface roughness, 3nm; visible and near‐IR light transmission is greater than 90%; Printed elements present enhanced mechanical and chemical resistance to common organic solvents; Structures exhibit low isotropic shrinkage, <10%; Elements withstand continuous‐wave laser intensities exceeding 7 × 105 W cm−2. Direct writing onto an optical fiber tip with no need for surface functionalization is presented, with the demonstration of a tall waveguide taper (≈1:5 aspect ratio) with low losses and modal crosstalk, and a freestanding photonic lantern mode multiplexer. The new ink can be utilized in a variety of applications and across many materials, requiring compact, durable, and complex optical elements.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3