Anharmonic Exciton‐Phonon Coupling in Metal‐Organic Chalcogenides Hybrid Quantum Wells

Author:

Kastl Christoph12ORCID,Bonfà Pietro34ORCID,Maserati Lorenzo156ORCID

Affiliation:

1. The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley California 94720 USA

2. Walter Schottky Institute and Physik Department Technical University of Munich 85748 Garching Germany

3. Dipartimento di Scienze Matematiche, Fisiche e Informatiche Universitá di Parma Parma 43124 Italy

4. Centro S3 CNR‐Istituto Nanoscienze via Campi 213/A Modena I‐41125 Italy

5. Center for Nano Science and Technology @PoliMi Istituto Italiano di Tecnologia Milan 20133 Italy

6. Dipartimento di Fisica e Astronomia Università di Bologna Viale Berti‐Pichat 6/2 Bologna 40127 Italy

Abstract

AbstractIn contrast to inorganic quantum wells, hybrid quantum wells (HQWs) based on metal‐organic semiconductors are characterized by relatively soft lattices, in which excitonic states can strongly couple to lattice phonons. Therefore, understanding the lattice's impact on exciton dynamics is essential for harnessing the optoelectronic potential of HQWs. Beyond 2D metal halide perovskites, layered metal‐organic chalcogenides (MOCs), which are an air‐stable, underexplored material class hosting room‐temperature excitons, can be exploited as photodetectors, light emitting devices, and ultrafast photoswitches. Here, the role of phonons in the optical transitions of the prototypical MOC [AgSePh] is elucidated. Impulsive stimulated Raman scattering (ISRS) allows the detection of coherent exciton oscillations driven by Fröhlich interaction with low‐energy optical phonons. Steady state absorption and Raman spectroscopies reveal a strong exciton‐phonon coupling (Huang‐Rhys parameter ≈1.7) and its anharmonicity, manifested as a nontrivial temperature‐dependent Stokes shift. The ab initio calculations support these observations, hinting at an anharmonic behavior of the low‐energy phonons <200 cm−1. These results untangle complex exciton‐phonon interactions in MOCs, establishing an ideal testbed for room‐temperature many‐body phenomena.

Funder

U.S. Department of Energy

Office of Science

Basic Energy Sciences

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3