Author:
Fratelli Ilaria,Maserati Lorenzo,Basiricò Laura,Galeazzi Alessandro,Passarella Bianca,Ciavatti Andrea,Caironi Mario,Fraboni Beatrice
Abstract
X-ray detection for personal dosimetry requires sensitive, stable and non-toxic materials. At the same time, scalability onto large-area and flexible substrates is emerging as a desirable property. To satisfy these requirements, novel materials to be employed as the active layer of direct X-ray detectors are needed. In this search for easy-processability, large area, efficient and non-toxic materials for direct X-ray detection, we assess the performance of a layered metal-organic chalcogenide [AgSePh]∞, recently proposed as representative of a novel excitonic semiconductors platform. Here we demonstrate that [AgSePh]∞ can be successfully applied as direct ionizing radiation detecting layer, reaching sensitivities up to (180 ± 10) μC Gy−1 cm−2 and competitive limit of detection down to (100 ± 30) nGy s−1. Moreover, it offers good stability and reproducibility of detection after 100 Gy of irradiation and upon bending to a curvature radius of 5 mm.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献