Refractory Plasmonics of Reactively Sputtered Hafnium Nitride Nanoparticles: Pushing Limits

Author:

Pleskunov Pavel1ORCID,Protsak Mariia1ORCID,Krtouš Zdeněk12ORCID,Košutová Tereza3ORCID,Tosca Marco14ORCID,Biliak Kateryna1ORCID,Červenková Veronika1ORCID,Nikitin Daniil1ORCID,Hanuš Jan1ORCID,Cieslar Miroslav5ORCID,Gordeev Ivan6ORCID,Dopita Milan3ORCID,Vorochta Michael7ORCID,Kousal Jaroslav1ORCID,Martinu Ludvik2ORCID,Choukourov Andrei1ORCID

Affiliation:

1. Department of Macromolecular Physics Faculty of Mathematics and Physics Charles University V Holesovickach 2 Prague 18000 Czech Republic

2. Department of Engineering Physics Polytechnique Montreal Montreal Quebec H3T1J4 Canada

3. Department of Condensed Matter Physics Faculty of Mathematics and Physics Charles University Ke Karlovu 5 Prague 12116 Czech Republic

4. ELI Beamlines Facility The Extreme Light Infrastructure ERIC Za Radnicí 835 Dolní Břežany 25241 Czech Republic

5. Department of Physics of Materials Faculty of Mathematics and Physics Charles University Ke Karlovu 5 Prague 12116 Czech Republic

6. Institute of Physics Academy of Sciences of the Czech Republic Cukrovarnická 10 Prague 16200 Czech Republic

7. Department of Surface and Plasma Science Faculty of Mathematics and Physics Charles University V Holešovičkách 2 Prague 18000 Czech Republic

Abstract

AbstractHigh‐temperature plasmonics deals with optically active nanostructures that can withstand high temperatures. A conventional approach relying on standalone noble metal nanoparticles fails to deliver refractory plasmonic nanomaterials, and an alternative route envisions metal nitrides. The main challenge remains the development of advanced synthesis techniques and the insight into thermal stability under real‐life application conditions. Here, hafnium nitride nanoparticles (HfN NPs) can be produced by gas aggregation using reactive magnetron sputtering, a technique with a small environmental footprint are shown. As‐deposited NPs are of 10 nm mean size and consist of stoichiometric, crystalline fcc HfN. They are characterized by optical absorption below 500 nm caused by interband transitions and in the red/near‐infrared (NIR) region due to intraband transitions and localized surface plasmon resonance (LSPR). The optical response can be engineered by tuning the NP composition as predicted by finite‐difference time‐domain (FDTD) calculations. Going beyond the state‐of‐the‐art, the HfN NP thermal stability is focued under ultrahigh vacuum (UHV) and in air. During UHV annealing to 850 °C, the NPs retain their morphology, chemical and optical properties, which makes them attractive in space mission and other applications. During air annealing to 800 °C, HfN NPs remain stable until 250 °C, which sets a limit for air‐mediated use.

Funder

Grantová Agentura České Republiky

Ministerstvo Školství, Mládeže a Tělovýchovy

European Regional Development Fund

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3